Suffers

OpenGL

Learning Outcomes

e Be aware of other buffers within the OpenGL model, including

e Front and Back

e | eft and Right

e Depth

e Scissors

e Stencill

Front & Back (Colour) Buffers

e OpenGL does not render (draw) primitives directly on the screen. Instead,
rendering is done in a buffer, which is later swapped to the screen.

e These two buffers as the front (the screen) and back color buffers.

e By default, OpenGL commands are rendered into the back buffer, and when
you call glutSwapBuffers(or your operating system-specific buffer swap
function), the front and back buffers are swapped so that you can see the
rendering results.

e Directly rendering into the front buffer is possible - useful for displaying a
series of drawing commands so that you can see some object or shape
actually being drawn.

e 2 Techniques:
e Buffer Targets
e Single Buffer

BUﬁer Targe’[s void glDrawBuffer(Glenum mode);

e Specifying GL_FRONT causes OpenGL to render to the front buffer, and
GL_BACK moves rendering back to the back buffer.

e OpenGL implementations can support more than just a single front and back
buffer for rendering, such as left and right buffers for stereo rendering, and
auxiliary buffers.

Requesting a Single Buffer

e Do not request double buffered rendering when OpenGL is
initialized.

glutInitDisplayMode (GLUT _DOUBLE | GLUT_RGB | GLUT_DEPTH);

e OpenGL is initialized differently on each OS plat-form, but with
GLUT, we initialize our display mode for RGB color and double-
buffered rendering

glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH);

e Must call either glFlush() or glFinish() whenever you want to see the
results actually drawn to screen. A buffer swap implicitly performs a
flush of the pipeline and waits for rendering to complete before the
swap actually occurs.

OpenGL Single Buffered

GLfloat x -100.0;
GLfloat y = -100.0;

void timer(int value)

{
glutTimerFunc(50, timer, 0);
glutPostRedisplay();

I3

int main(int argc, charx argvl[])

{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_RGB);
glutInitWindowSize(800,600);

glutCreateWindow("OpenGL Single Buffered");

glutDisplayFunc(renderScene);
setupRC();

timer(50);

glutMainLoop();

return 0;

void renderScene(void)

{

if (x == 100.0)

{
glClear(GL_COLOR_BUFFER_BIT);
Xx =y = -100.0;

+

g1lBegin(GL_POINTS);
glVertex2f(x,y);

glEnd();

X

X + 1.0;
y =y + 1.0

’

glFlush();
Iy

void setupRC()
{
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glColor3f(e.of, 1.0f, 0.0f);
glOrtho (-100.0f, 100.0f, -100.0f,
100.0f, -100.0f, 100.0°T);
glClear(GL_COLOR_BUFFER_BIT);

}

The Depth Buffer

e The Depth buffer is filled with depth values instead of color values.

e Available on request: | glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

e ... and explicitly enabled: glEnable(GL_DEPTH_TEST);

e Even when depth testing is not enabled, if a depth buffer is created, OpenGL

will write corresponding depth values for all color fragments that go into the
color buffer.

e Can be temporarily turn off glDepthMask (GL_FALSE);

e disables writes to the depth buffer but does not disable depth testing from

being performed using any values that have already been written to the depth
buffer.

SCISSOrs

e Can improve rendering performance by updating only the portion of the
screen that has changed.

e OpenGL allows you to specify a scissor rectangle within your window where
rendering can take place. By default, the scissor rectangle is the size of the
window, but can be set with:

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height),

e Scissors can be enabled/disabled:

glEnable(GL_SCISSOR_TEST);
glDisable(GL_SCISSOR_TEST);

Stencil Buffer

e Similar to Scissors, but used too mask out an irregularly shap
area using a stencil pattern.

e Must request a stencil buffer:

glutinitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_STENCIL);

¢ |t can also be turned on and off:

glEnable(GL_STENCIL_TEST);

e \With the stencil test enabled, drawing occurs only at locations that
pass the stencil test.

void glStencilFunc(GLenum func, GLint ref, GLuint mask);

