
Colour

OpenGL

Learning Outcomes

• Have a general understanding of the principles surrounding the colour model
in OpenGL

• Have seen the OpenGL colour Cube in action, and appreciate the shading
model.

• Understand how glColour operates, and in particular the effect of glColour on
polygon rendering with SMOOTH shading enabled

2

Colour & Light

• Color is simply a wavelength of light that is visible to the human eye.

• Wavelengths of visible light range from 390 nanometers (one billionth of a
meter) for violet light to 720 nanometers for red light - called the visible
spectrum

3

Colour & Reflection

• A white object reflects all wavelengths of colors evenly, and a black object
absorbs all wavelengths evenly.

• Considering light as a particle - any given object when illuminated by a light
source is struck by photons.

• The reflection of photons from an object depends on the kinds of atoms, the
number of each kind, and the arrangement of atoms (and their electrons) in
the object

4

Materials

• Some photons are reflected and
some are absorbed (the absorbed
photons are usually converted to
heat)

• Any given material or mixture of
materials reflects more of some
wavelengths than others

5

The Eye
• The eye has three kinds of cone cells. All of

them respond to photons, but each kind
responds most to a particular wavelength.

• One is more excited by photons that have
reddish wavelengths; one, by green
wavelengths; and one, by blue wavelengths.

• A combination of different wavelengths of
various intensities will yield a mix of colors.

• All wavelengths equally represented thus are
perceived as white, and no light of any
wavelength is black.

6

Screens

• Each pixel on your LCD screen has a light
behind it and three very small computer-
controlled polarized (red, green, and blue)
filters.

• Basic LCD technology is based on the
polarization of light, and blocking that light
with the LCD material electronically

7

Graphics Hardware: Resolution

• 960-by-640 (iphone) up to 1,900-1,200 (this mac) or more.

• Well-written graphics applications display the same approximate image
regardless of screen resolution.

• The user should automatically be able to see more and sharper details as the
resolution increases.

8

Graphics Hardware: Colour Depth

• Colour Components: Red, Green, Blue

• An increase in available colors improve the clarity of the resulting image.

• 4 bits per colour component = 12 bits, rounded to 16 bits to align with
machine word size

• Supports 65,536 different colors, and consumes less memory for the color
buffer than the higher bit depth modes.

• Many graphics applications have very noticeable visual artifacts (usually in
color gradations) at this color depth.

9

Graphics Hardware: Colour Depth

• 8 bits per colour component - 24 and usually rounded to 32 bit display
modes

• Allows more than 16 million colors onscreen at a time.

• 8 bits per Red, Green and Blue “Channel” = 24

• + 8 bits for “Alpha” component - used in some operations to simulate
transparency and other effects.

10

Colour in OpenGL

11

• Color is specified by three positive color values, can be
modeled as a volume called the RGB colorspace

• The red, green, and blue coordinates are specified just
like x, y, and z coordinates.

• At the origin (0,0,0), the relative intensity of each
component is zero, and the resulting color is black.

• With 8 bits for each component, so 255 along the axis
represents full saturation of that component.

Colour Cube

12

• We then end up with a cube measuring 255 on each
side.

• The corner directly opposite black, where the
concentrations are (0,0,0), is white, with relative
concentrations of (255,255,255).

• At full saturation (255) from the origin along each
axis lie the pure colors of red, green, and blue.

• This “color cube” contains all the possible colors,
either on the surface of the cube or within the
interior of the cube.

• Eg all possible shades of gray between black and
white lie internally on the diagonal line between the
corner at (0,0,0) and the corner at (255,255,255).

glColour function

• N = number of parameters

• 3 RGB

• 4 RGBA (alpha)

• T = Type

• b, d, f, i, s, ub, ui, or us for byte, double, float, integer, short, unsigned
byte, unsigned integer, and unsigned short

• Another version of the function has a v appended

• to the end; this version takes an array that contains the arguments (the v
stands for vectored)

13

void glColorNT(red, green, blue, alpha);

glColor3f

• Most OpenGL programs that you’ll see use glColor3f and specify the intensity
of each component as 0.0 for none or 1.0 for full intensity.

• Internally, OpenGL represents color values as floating-point values.

• As higher resolution floating point color buffers evolve using floats will be
more faithfully represented by the color hardware.

14

Colour Cube

• The surface of this cube shows the
color variations from black on one
corner to white on the opposite
corner.

• Red, green, and blue are present on
their corners 255 units from black.

• Additionally, the colors yellow, cyan,
and magenta have corners showing
the combination of the other three
primary colors

15

Colour Cube Code

• Draw 6 QUADS

• Each Quad will specify
appropriate colour at the
corners

16

void SetupRC()
{
 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_SMOOTH);
}

void renderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 //...

 glBegin(GL_QUADS);
 frontFace();
 backFace();
 topFace();
 bottomFace();
 leftFace();
 rightFace();
 glEnd();

 //...
 glutSwapBuffers();
}

Verbose Version

17

void frontFace()
{
 // White
 glColor3f(255, 255, 255);
 glVertex3f(50.0f, 50.0f, 50.0f);

 // Yellow
 glColor3f(255, 255, 0);
 glVertex3f(50.0f, -50.0f, 50.0f);

 // Red
 glColor3f(255, 0, 0);
 glVertex3f(-50.0f, -50.0f, 50.0f);

 // Magenta
 glColor3f(255, 0, 255);
 glVertex3f(-50.0f, 50.0f, 50.0f);
}

void backFace()
{
 // Cyan
 glColor3f(0.0f, 1.0f, 1.0f);
 glVertex3f(50.0f, 50.0f, -50.0f);

 // Green
 glColor3f(0.0f, 1.0f, 0.0f);
 glVertex3f(50.0f, -50.0f, -50.0f);

 // Black
 glColor3f(0.0f, 0.0f, 0.0f);
 glVertex3f(-50.0f, -50.0f, -50.0f);

 // Blue
 glColor3f(0.0f, 0.0f, 1.0f);
 glVertex3f(-50.0f, 50.0f, -50.0f);
}

void topFace()
{
 // Cyan
 glColor3f(0.0f, 1.0f, 1.0f);
 glVertex3f(50.0f, 50.0f, -50.0f);

 // White
 glColor3f(1.0f, 1.0f, 1.0f);
 glVertex3f(50.0f, 50.0f, 50.0f);

 // Magenta
 glColor3f(1.0f, 0.0f, 1.0f);
 glVertex3f(-50.0f, 50.0f, 50.0f);

 // Blue
 glColor3f(0.0f, 0.0f, 1.0f);
 glVertex3f(-50.0f, 50.0f, -50.0f);
}

void bottomFace()
{
 // Green
 glColor3f(0.0f, 1.0f, 0.0f);
 glVertex3f(50.0f, -50.0f, -50.0f);

 // Yellow
 glColor3f(1.0f, 1.0f, 0.0f);
 glVertex3f(50.0f, -50.0f, 50.0f);

 // Red
 glColor3f(1.0f, 0.0f, 0.0f);
 glVertex3f(-50.0f, -50.0f, 50.0f);

 // Black
 glColor3f(0.0f, 0.0f, 0.0f);
 glVertex3f(-50.0f, -50.0f, -50.0f);
}

void leftFace()
{
 // White
 glColor3f(1.0f, 1.0f, 1.0f);
 glVertex3f(50.0f, 50.0f, 50.0f);

 // Cyan
 glColor3f(0.0f, 1.0f, 1.0f);
 glVertex3f(50.0f, 50.0f, -50.0f);

 // Green
 glColor3f(0.0f, 1.0f, 0.0f);
 glVertex3f(50.0f, -50.0f, -50.0f);

 // Yellow
 glColor3f(1.0f, 1.0f, 0.0f);
 glVertex3f(50.0f, -50.0f, 50.0f);
}

void rightFace()
{
 // Magenta
 glColor3f(1.0f, 0.0f, 1.0f);
 glVertex3f(-50.0f, 50.0f, 50.0f);

 // Blue
 glColor3f(0.0f, 0.0f, 1.0f);
 glVertex3f(-50.0f, 50.0f, -50.0f);

 // Black
 glColor3f(0.0f, 0.0f, 0.0f);
 glVertex3f(-50.0f, -50.0f, -50.0f);

 // Red
 glColor3f(1.0f, 0.0f, 0.0f);
 glVertex3f(-50.0f, -50.0f, 50.0f);
}

Colour Class

18

struct Color
{
 float R;
 float G;
 float B;
 float A;

 static Color White;
 static Color Yellow;
 static Color Red;
 static Color Magenta;
 static Color Cyan;
 static Color Green;
 static Color Black;
 static Color Blue;

 Color();
 Color(float r, float g, float b, float a=1.0f);
 Color(int r, int g, int b, int a=255);

 void render();
 void renderClear();
};

Color Color::Black (0, 0, 0);
Color Color::Blue (0, 0, 255);
Color Color::Green (0, 255, 0);
Color Color::Cyan (0, 255, 255);
Color Color::Red (255, 0, 0);
Color Color::Magenta (255, 0, 255);
Color Color::Yellow (255, 255, 0);
Color Color::White (255, 255, 255);

Color::Color()
{
 R = G = B = A = 1.0f;
}

Color::Color(float r, float g, float b, float a)
{
 R = r;
 G = g;
 B = b;
 A = a;
}

Color::Color(int r, int g, int b, int a)
{
 R = (float) r / 255.0f;
 G = (float) g / 255.0f;
 B = (float) b / 255.0f;
 A = (float) a / 255.0f;
}

void Color::render()
{
 glColor4f(R,G,B,A);
}

void Color::renderClear()
{
 glClearColor(R,G,B, 1.0f);
}

Use Our World Framework

19

struct Quad : public Geometry
{
 void render()
 {
 glBegin(GL_QUADS);
 frontFace();
 backFace();
 topFace();
 bottomFace();
 leftFace();
 rightFace();
 glEnd();
 }
};

int main(int argc, char* argv[])
{
 theWorld.setCmdlineParams(&argc, argv);
 theWorld.initialize(800,800, "Color Cube");

 Quad *quad = new Quad();
 theWorld.add(quad);

 theWorld.setProjection(new Perspective(35, Range(1,1000), 500));

 theWorld.start();
 return 0;
}

To Make it Rotate

• Make quad a Global
Variable

• In specialKeyPress - use
the rotation function we
already have
implemented for
assignment 1 solution.

20

Quad *quad;

void World::specialKeypress(int key)
{
 if (key == GLUT_KEY_UP)
 quad->rotate(1, Vector3::UnitX);
 if (key == GLUT_KEY_DOWN)
 quad->rotate(-1, Vector3::UnitX);
 if (key == GLUT_KEY_LEFT)
 quad->rotate(1, Vector3::UnitY);
 if (key == GLUT_KEY_RIGHT)
 quad->rotate(-1, Vector3::UnitY);

 glutPostRedisplay();
}

struct Quad : public Geometry
{
 void render()
 {
 glRotatef(angle, rotationAxis.X, rotationAxis.Y, rotationAxis.Z);
 glBegin(GL_QUADS);
 frontFace();
 backFace();
 topFace();
 bottomFace();
 leftFace();
 rightFace();
 glEnd();
 }
};

Colour Cube Specification

21

 Color colours[][6] =
 {
 {Color::White, Color::Yellow, Color::Red, Color::Magenta},
 {Color::Cyan, Color::Green, Color::Black, Color::Blue},
 {Color::Cyan, Color::White, Color::Magenta, Color::Blue},
 {Color::Green, Color::Yellow, Color::Red, Color::Black},
 {Color::White, Color::Cyan, Color::Green, Color::Yellow},
 {Color::Magenta, Color::Blue, Color::Black, Color::Red}
 };
 Vector3 vertices[][6] =
 {
 {Vector3(50.0f, 50.0f, 50.0f), Vector3(50.0f, -50.0f, 50.0f), Vector3(-50.0f, -50.0f, 50.0f), Vector3(-50.0f, 50.0f, 50.0f) },
 {Vector3(50.0f, 50.0f, -50.0f), Vector3(50.0f, -50.0f, -50.0f), Vector3(-50.0f, -50.0f, -50.0f), Vector3(-50.0f, 50.0f, -50.0f) },
 {Vector3(50.0f, 50.0f, -50.0f), Vector3(50.0f, 50.0f, 50.0f), Vector3(-50.0f, 50.0f, 50.0f), Vector3(-50.0f, 50.0f, -50.0f) },
 {Vector3(50.0f, -50.0f, -50.0f), Vector3(50.0f, -50.0f, 50.0f), Vector3(-50.0f, -50.0f, 50.0f), Vector3(-50.0f, -50.0f, -50.0f)},
 {Vector3(50.0f, 50.0f, 50.0f), Vector3(50.0f, 50.0f, -50.0f), Vector3(50.0f, -50.0f, -50.0f), Vector3(50.0f, -50.0f, 50.0f) },
 {Vector3(-50.0f, 50.0f, 50.0f), Vector3(-50.0f, 50.0f, -50.0f), Vector3(-50.0f, -50.0f, -50.0f), Vector3(-50.0f, -50.0f, 50.0f) }
 };

Rendering the Cube

22

void drawFace(Color colours[], Vector3 vertices[])
{
 for (int i=0; i<4; i++)
 {
 colours[i].render();
 vertices[i].render();
 }
}

 glBegin(GL_QUADS);
 for (int i=0; i<6; i++)
 {
 drawFace(colours[i], vertices[i]);
 }
 glEnd();

glColour Definition

• Working definition for glColor: sets the current color that is used for all
vertices drawn after the call.

• If we specify a different color for each vertex of a primitive (point, line, or
polygon), what color is the interior?

• For Points: A point has only one vertex, and whatever color you specify for
that vertex is the resulting color for that point

23

glColor & Lines

• A line, however, has two vertices, and each can be set to a different
color.

• The color of the line depends on the shading model. Shading is simply
defined as the smooth transition from one color to the next.

• Any two points in the RGB colorspace can be connected by a straight
line.

• Smooth shading causes the colors along the line to vary as they do
through the color cube from one color point to the other.

24

• Can do shading mathematically by
finding the equation of the line
connecting two points in the
three-dimensional RGB
colorspace.

• Then you can simply loop through
from one end of the line to the
other, retrieving coordinates along
the way to provide the color of
each pixel on the screen.

• OpenGL implements this
algorithm via GL_SMOOTH
shading

25

void setupRC()
{
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_SMOOTH);
}

Polygon Shading

• More complex for polygons.

• E.g. A triangle can also be represented as a
plane within the color cube.

• Draw a triangle with each vertex at full
saturation for the red, green, and blue color
components.

26

Triangle Class

• Add colour to our triangle class:

27

struct Triangle : public Geometry
{
 Vector3 p1, p2, p3;
 Color c1, c2, c3;

 Triangle(std::istream& is);
 Triangle(Vector3 p1, Vector3 p2, Vector3 p3);
 Triangle(Vector3 p1, Vector3 p2, Vector3 p3,
 Color c1, Color c2, Color c3);
 void render();
};

void Triangle::render()
{
 glBegin(GL_TRIANGLES);
 c1.render();
 p1.render();
 c2.render();
 p2.render();
 c3.render();
 p3.render();
 glEnd();
}

Smooth Shading Triangle

• Because smooth shading is
specified, the interior of the triangle is
shaded to provide a smooth
transition between each corner

28

glShadeModel(GL_SMOOTH);
Triangle t (Vector3(-50.0f, -50.0f, 50.0f), Vector3(50.0f, -50.0f, -50.0f), Vector3(50.0f, 50.0f, -50.0f),
 Color::Blue, Color::Red, Color::Green);
t.render();

Flat Shading Model

• Flat shading means that no shading
calculations are performed on the
interior of primitives.

• Generally, with flat shading, the color
of the primitive’s interior is the color
that was specified for the last vertex.

• The only exception is for a
GL_POLYGON primitive, in which case
the color is that of the first vertex.

29

glShadeModel(GL_FLAT);
Triangle t (Vector3(-50.0f, -50.0f, 50.0f), Vector3(50.0f, -50.0f, -50.0f), Vector3(50.0f, 50.0f, -50.0f),
 Color::Blue, Color::Red, Color::Green);
t.render();

