Colour

OpenGL

Learning Outcomes

e Have a general understanding of the principles surrounding the colour model
in OpenGL

e Have seen the OpenGL colour Cube in action, and appreciate the shading
model.

e Understand how glColour operates, and in particular the effect of glColour on
polygon rendering with SMOOTH shading enabled

Colour & Light

e Color is simply a wavelength of light that is visible to the human eye.

E<— Wavelength—>i
| |
|

/\:W\/\
|
Trough - - -

e \Wavelengths of visible light range from 390 nanometers (one billionth of a
meter) for violet light to 720 nanometers for red light - called the visible
spectrum

g g

g S

Blue Green Yellow Orange g 8
S &

Colour & Reflection

e A white object reflects all wavelengths of colors evenly, and a black object
absorbs all wavelengths evenly.

e Considering light as a particle - any given object when illuminated by a light
source is struck by photons.

¢ The reflection of photons from an object depends on the kinds of atoms, the
number of each kind, and the arrangement of atoms (and their electrons) in
the object

Materials

e Some photons are reflected and =
some are absorbed (the absorbed _— 4, Light source
photons are usually converted to
heat)

e Any given material or mixture of
materials reflects more of some Some photons absorbed,
wavelengths than others o, e refeted

The Eye

* The eye has three kinds of cone cells. All of
them respond to photons, but each kind
responds most to a particular wavelength.

e One is more excited by photons that have
reddish wavelengths; one, by green
wavelengths; and one, by blue wavelengths.

Retina

¢ A combination of different wavelengths of
various intensities will yield a mix of colors.

¢ All wavelengths equally represented thus are
perceived as white, and no light of any
wavelength is black.

"Brown light”

/

R R G
«~ o «—® <™

6 red, 4 green, and 1 blue photon

Screens

e Each pixel on your LCD screen has a light
behind it and three very small computer-

Electron gun
Computer screen

controlled polarized (red, green, and blue)
A

Individual screen
elements

e Basic LCD technology is based on the '

filters. 14+ %

polarization of light, and blocking that light
with the LCD material electronically

QIO

Red, green, and
blue phosphors

Graphics Hardware: Resolution

e 960-by-640 (iphone) up to 1,900-1,200 (this mac) or more.

e \Well-written graphics applications display the same approximate image
regardless of screen resolution.

* The user should automatically be able to see more and sharper details as the
resolution increases.

Graphics Hardware: Colour Depth

e Colour Components: Red, Green, Blue

e An increase in available colors improve the clarity of the resulting image.

* 4 bits per colour component = 12 bits, rounded to 16 bits to align with
machine word size

e Supports 65,536 different colors, and consumes less memory for the color
buffer than the higher bit depth modes.

e Many graphics applications have very noticeable visual artifacts (usually in
color gradations) at this color depth.

Graphics Hardware: Colour Depth

* 8 bits per colour component - 24 and usually rounded to 32 bit display
modes

e Allows more than 16 million colors onscreen at a time.

e 8 bits per Red, Green and Blue “Channel” = 24

e + 8 bits for “Alpha” component - used in some operations to simulate
transparency and other effects.

Colour in OpenGL

e Color is specified by three positive color values, can be
modeled as a volume called the RGB colorspace

* The red, green, and blue coordinates are specified just
like X, y, and z coordinates.

e At the origin (0,0,0), the relative intensity of each
component is zero, and the resulting color is black.

¢ \With 8 bits for each component, so 255 along the axis
represents full saturation of that component.

Colour Cube

¢ \We then end up with a cube measuring 255 on each
side.

Green

* The corner directly opposite black, where the

Green Yellow
concentrations are (0,0,0), is white, with relative

(0,255,0) (255,255,0)

(255,255,255)

A
concentrations of (255,255,255). cyr / Whie

(0,255,255)
e At full saturation (255) from the origin along each Black/\’
axis lie the pure colors of red, green, and blue. 000

Shades of gray
¢ This “color cube” contains all the possible colors,

either on the surface of the cube or within the
interior of the cube.

(255,0,255)

e Eg all possible shades of gray between black and
white lie internally on the diagonal line between the
corner at (0,0,0) and the corner at (255,255,255).

glColour function

void glColorNT(red, green, blue, alpha);

e N = number of parameters
e 3 RGB
e 4 RGBA (alpha)

e T =Type

b, d,f,i,s, ub, ui, orus for byte, double, float, integer, short, unsigned
byte, unsigned integer, and unsigned short

e Another version of the function has a v appended

¢ t0 the end; this version takes an array that contains the arguments (the v
stands for vectored)

glColor3f

e Most OpenGL programs that you’ll see use glColor3f and specify the intensity
of each component as 0.0 for none or 1.0 for full intensity.

e Internally, OpenGL represents color values as floating-point values.

e As higher resolution floating point color buffers evolve using floats will be
more faithfully represented by the color hardware.

RGB Cube

Colour Cube

¢ The surface of this cube shows the
color variations from black on one
corner to white on the opposite
COorner.

® Red, green, and blue are present on XeX RGE Cube
their corners 255 units from black.

e Additionally, the colors yellow, cyan,
and magenta have corners showing
the combination of the other three
primary colors

void SetupRC()

{
Colour Cube Code | // slack background

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

glEnable(GL_DEPTH_TEST);
* Draw 6 QUADS glShadeModel(GL_SMOOTH);

¥
e Each Quad will specify voild renderScene(void)

appropriate colour at the t
corners

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//. ..

glBegin(GL_QUADS);
frontFace();
backFace();
topFace();
bottomFace();
leftFace();
rightFace();

glEnd();

/7. ..
glutSwapBuffers();

Verbose Version

void leftFace() void topFace() void frontFace()
{ { {
// White // Cyan // White
glColor3f(l.0f, 1.0f, 1.0f); glColor3f(0.0f, 1.0f, 1.0f); glColor3f(255, 255, 255);
glVertex3f(50.0f, 50.0f, 50.0f); glVertex3f(50.0f, 50.0f, -50.0f); glVertex3f(50.0f, 50.0f, 50.0f);

// Cyan // White // Yellow
glColor3f(0.0f, 1.0f, 1.0f); glColor3f(l.0f, 1.0f, 1.0f); glColor3f(255, 255, 0);
glVertex3f(50.0f, 50.0f, -50.0f); glVertex3f(50.0f, 50.0f, 50.0f); glVertex3f(50.0f, -50.0f, 50.0f);

// Green // Magenta // Red
glColor3f(@.0f, 1.0f, 0.0f); glColor3f(l.0f, 0.0f, 1.0f); glColor3f(255, 0, 0);
glVertex3f(50.0f, -50.0f, -50.0f); glVertex3f(-50.0f, 50.0f, 50.0f); glVertex3f(-50.0f, -50.0f, 50.0f);

// Yellow // Blue // Magenta
glColor3f(l.0f, 1.0f, 0.0f); glColor3f(0.0f, 0.0f, 1.0f); glColor3f(255, @, 255);
glVertex3f(50.0f, -50.0f, 50.0f); glVertex3f(-50.0f, 50.0f, -50.0f); glVertex3f(-50.0f, 50.0f, 50.0f);

¥ ¥ ¥

void rightFace() void bottomFace() void backFace()
{ { {
// Magenta // Green // Cyan
glColor3f(l.0f, 0.0f, 1.0f); glColor3f(0.0f, 1.0f, 0.0f); glColor3f(@.0f, 1.0f, 1.0f);
glVertex3f(-50.0f, 50.0f, 50.0f); glVertex3f(50.0f, -50.0f, -50.0f); glVertex3f(50.0f, 50.0f, -50.0f);

// Blue // Yellow // Green
glColor3f(0.0f, 0.0f, 1.0f); glColor3f(1.0f, 1.0f, 0.0f); glColor3f(0.0f, 1.0f, 0.0f);
glVertex3f(-50.0f, 50.0f, -50.0f); glVertex3f(50.0f, -50.0f, 50.0f); glVertex3f(50.0f, -50.0f, -50.0f);

// Black // Red // Black
glColor3f(0.0f, 0.0f, 0.0f); glColor3f(l1.0f, 0.0f, 0.0f); glColor3f(0.0f, 0.0f, 0.0f);
glVertex3f(-50.0f, -50.0f, -50.0f); glVertex3f(-50.0f, -50.0f, 50.0f); glVertex3f(-50.0f, -50.0f, -50.0f);

// Red // Black // Blue
glColor3f(l.0f, 0.0f, 0.0f); glColor3f(0.0f, 0.0f, 0.0f); glColor3f(0.0f, 0.0f, 1.0f);
glVertex3f(-50.0f, -50.0f, 50.0f); glVertex3f(-50.0f, -50.0f, -50.0f); glVertex3f(-50.0f, 50.0f, -50.0f);

Colour Class

struct Color

{
float R;
float G;

float B;
float A;

static Color White;

static Color Yellow;
static Color Red;

static Color Magenta;
static Color Cyan;

static Color Green;
static Color Black;

static Color Blue;

Color();

Color(float r, float g, float b, float a=1.0f);
Color(int r, int g, int b, int a=255);

void render();
void renderClear();

+s

Color::Black (0, Q,
Color::Blue (9, Q,
Color::Green (0O, 255,
Color: :Cyan (0, 255,
Color: :Red (255, Q,
Color: :Magenta (255, Q,
Color::Yellow (255, 255,
Color::White (255, 255,

:Color(Q)

G=B=A=1.0f,;

::Color(float r, float g, float b, float a)

::Color(int r, int g, int b, int a)

(float) r / 255.0f;

= (float) g / 255.0f;
= (float) b / 255.0f;

= (float) a / 255.0f;
}

void Color::render()

{
}

glColor4f(R,G,B,A);

void Color: :renderClear()

{
glClearColor(R,G,B, 1.0f);

}

Use Our World Framework

struct Quad : public Geometry
{

void render()

{
glBegin(GL_QUADS);

frontFace();
backFace();

topFace();
bottomFace();

leftFace();
rightFace();

glEnd(Q);
}
+s

int main(int argc, char* argv[])

{
theWorld.setCmdlineParams(&argc, argv);

theWorld.initialize(800,800, "Color Cube");

Quad *quad = new Quad();
theWorld.add(quad);

theWorld.setProjection(new Perspective(35, Range(1,1000), 500));

theWorld.start();
return 0;

To Make 1t

Rotate

e Make quad a Global
Variable

* |n specialKeyPress - use
the rotation function we
already have
Implemented for
assignment 1 solution.

struct Quad :
{

public Geometry

void render()
{
glRotatef(angle, rotationAxis.X, rotationAxis.Y,
glBegin(GL_QUADS);
frontFace();
backFace();
topFace();
bottomFace();
leftFace();
rightFace();
glLEnd(Q);
¥
s

rotationAxis.Z);

Quad *quad;

void World: :specialKeypress(int key)

{
1f (key == GLUT_KEY_UP)
quad->rotate(1l, Vector3::UnitX);
1f (key == GLUT_KEY_DOWN)
quad->rotate(-1, Vector3::UnitX);
if (key == GLUT_KEY_LEFT)
quad->rotate(1l, Vector3::UnitY);
1f (key == GLUT_KEY_RIGHT)
quad->rotate(-1, Vector3::UnitY);

glutPostRedisplay();
ks

Colour Cube Specification

Color colours[][6] =

{
{Color::White, Color::Yellow,
{Color::Cyan, Color: :Green,
{Color::Cyan, Color::White,
{Color::Green, Color::Yellow,
{Color::White, Color::Cyan,
{Color: :Magenta, Color::Blue,

s

Vector3 vertices[][6] =

{
{Vector3(50.0f, 50.0f, 50.0f),
{Vector3(50.0f, 50.0f, -50.0f),
{Vector3(50.0f, 50.0f, -50.0f),
{Vector3(50.0f, -50.0f, -50.0f),
{Vector3(50.0f, 50.0f, 50.0f),
{Vector3(-50.0f, 50.0f, 50.0f),

+s

Color::
Color::
Color::
Color::
Color::
Color::

Vector3(50.0f,
Vector3(50.0f,
Vector3(50.0f,
Vector3(50.0f,
Vector3(50.0f,

Color
Color
Color
Color
Color
Color

-50.0f, 50.0f), Vector3(-50.0f, -50.0f, 50.0f),
-50.0f, -50.0f), Vector3(-50.0f, -50.0f, -50.0f),
50.0f, 50.0f), Vector3(-50.0f, 50.0f, 50.0f),

-50.0f, 50.0f), Vector3(-50.0f, -50.0f, 50.0f),
50.0f, -50.0f), Vector3(50.0f, -50.0f, -50.0f),

Vector3(-50.0f, 50.0f, -50.0f), Vector3(-50.0f, -50.0f, -50.0f),

Vector3(-50.0f, 50.0f, 50.0f) 1},
Vector3(-50.0f, 50.0f, -50.0f) },
Vector3(-50.0f, 50.0f, -50.0f) 1},
Vector3(-50.0f, -50.0f, -50.0f)},
Vector3(50.0f, -50.0f, 50.0f) 1},
Vector3(-50.0f, -50.0f, 50.0f) }

Rendering the Cube

void drawFace(Color colours[], Vector3 vertices[])

{
for (int 1=0; 1<4; 1++)
{

colours[i].render();
vertices[i].render();

¥
¥

glBegin(GL_QUADS);
for (int i=0; i<6; i++)
{

drawFace(colours[i], vertices[1i]);

¥
glEndQ);

glColour Definition

e \WWorking definition for glColor: sets the current color that is used for all
vertices drawn after the call.

e |f we specify a different color for each vertex of a primitive (point, line, or
polygon), what color is the interior?

e For Points: A point has only one vertex, and whatever color you specify for
that vertex is the resulting color for that point

glColor & Lines

¢ A line, however, has two vertices, and each can be set to a different
color.

* The color of the line depends on the shading model. Shading is simply
defined as the smooth transition from one color to the next.

e Any two points in the RGB colorspace can be connected by a straight
line.

e Smooth shading causes the colors along the line to vary as they do
through the color cube from one color point to the other.

White
(255,255,255)

e Can do shading mathematically by
finding the equation of the line
connecting two points in the
three-dimensional RGB
colorspace.

" (64,64,64) (128,128,128) (192,192,192)
Dark gray Medium gray Light gray

o« 4 {

/

¢ Then you can simply loop through Vertex 1 ‘ Vertex 2
00,0 Shades of gray to white (255,255,255)

from one end of the line to the ok
other, retrieving coordinates along
the way to provide the color of

each pixel on the screen. void setupRC()
{

White

glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
e OpenGL implements this

| | glEnable(GL_DEPTH_TEST);
aLgczjr .|thm via GL_SMOOTH glShadeModel(GL_SMOOTH);
shading ks

Polygon Shading

e More complex for polygons.

Green

e £.g. A triangle can also be represented as a 0.250)
plane within the color cube.

e Draw a triangle with each vertex at full
saturation for the red, green, and blue color
components.

ST (255,0,0)

Triangle Class

e Add colour to our triangle class:

vold Triangle: :render()

{

struct Triangle : public Geometry

{ glBegin(GL_TRIANGLES);

cl.render();
pl.render();
cZ2.render();
p2.render();
c3.render();
p3.render();
glEnd();

Vector3 pl, p2, p3;
Color cl1, c2, c3;

Triangle(std: :istream& 1is);
Triangle(Vector3 pl, Vector3 p2, Vector3 p3);

Triangle(Vector3 pl, Vector3 p2, Vector3 p3,
Color cl, Color c2, Color c3);

void render(); 1

b

Smooth Shading Triangle

glShadeModel(GL_SMOOTH);

Triangle t (Vector3(-50.0f, -50.0f, 50.0f), Vector3(50.0f, -50.0f, -50.0f), Vector3(50.0f, 50.0f, -50.0f),
Color: :Blue, Color: :Red, Color::Green);

t.render(Q);

e Because smooth shading is
RGB Cube specified, the interior of the triangle is
shaded to provide a smooth
transition between each corner

Green

(0,255,0)

Flat Shading Model

glShadeModel(GL_FLAT);

Triangle t (Vector3(-50.0f, -50.0f, 50.0f), Vector3(50.0f, -50.0f, -50.0f), Vector3(50.0f, 50.0f, -50.0f),

Color: :Blue,
t.render();

Color: :Red, Color::Green);

e Flat shading means that no shading
calculations are performed on the
interior of primitives.

e Generally, with flat shading, the color
of the primitive’s interior is the color
that was specified for the last vertex.

® The only exception is for a
GL_POLYGON primitive, in which case
the color is that of the first vertex.

