
Polymorphic Container Problem

Monday 12 March 12

• A serious complaint about STL attacks the very paradigm on which STL is based.

• One of STL’s central tenants is that containers directly contain there objects, and
this is the root of many of its efficiency claims.

• But in doing this, STL runs contrary to one of the very important tenants in object
oriented programming: polymorphic references.

2

Monday 12 March 12

• For example, a program may contain a list of shapes, where shape is the
polymorphic superclass of other concrete classes such as ellipse, rectangle and
triangle

• Class shape may have a pure virtual method called draw(), while the concrete
subtypes all implement the draw() method.

• The program may iterate the list of shapes calling the polymorphic draw()method
which will execute the appropriate code block for each object in the list.

3

Monday 12 March 12

4

struct Point
{
 int x,y;

 Point(int x, int y) : x(x), y(y)
 {}
 void print()
 {
 cout << "X: " << x << " Y: " << y;
 }
};

struct Shape
{
 Point origin;

 Shape(Point p) : origin(p)
 {}

 virtual void draw()=0;
};

Monday 12 March 12

5

struct Ellipse : public Shape
{
 int radius;

 Ellipse(Point o, int r) : Shape(o), radius(r)
 {}

 virtual void draw()
 {
	 cout << "Ellipse with Origin: ";
 origin.print();
 cout << " and Radius: " << radius << endl;
 }
};

struct Rectangle : public Shape
{
 int width, height;

 Rectangle (Point topleft, int w, int h): Shape(topleft), width(w), height(h)
 {}

 virtual void draw()
 {
 cout << "Rectangle with Origin: ";
 origin.print();
 cout << " and Width: " << width << " Height: " << height << endl;
 }
};

Monday 12 March 12

6

 list <Shape> shapeList;

 shapeList.push_back(e);
 shapeList.push_back(r);

 foreach (Shape &s, shapeList)
 {
 s.draw();
 }

/usr/include/c++/4.2.1/bits/stl_list.h: In instantiation of 'std::_List_node<Shape>':
/usr/include/c++/4.2.1/bits/list.tcc:73: instantiated from 'void std::_List_base<_Tp, _Alloc>::_M_clear() [with _Tp = Shape, _Alloc =
std::allocator<Shape>]'
/usr/include/c++/4.2.1/bits/stl_list.h:348: instantiated from 'std::_List_base<_Tp, _Alloc>::~_List_base() [with _Tp = Shape, _Alloc =
std::allocator<Shape>]'
/usr/include/c++/4.2.1/bits/stl_list.h:408: instantiated from here
/usr/include/c++/4.2.1/bits/stl_list.h:101: error: cannot declare field 'std::_List_node<Shape>::_M_data' to be of abstract type 'Shape'
../src/poly1.cpp:16: note: because the following virtual functions are pure within 'Shape':
../src/poly1.cpp:22: note: 	virtual void Shape::draw()

• If class shape is pure virtual, the code will not compile because list will attempt to
generate a shape object (and it can’t because its has a pure virtual member).

struct Shape
{
 Point origin;

 Shape(Point p) : origin(p)
 {}

 virtual void draw()=0;
};

Monday 12 March 12

7

struct Shape
{
 Point origin;

 Shape(Point p) : origin(p)
 {}

 virtual void draw()
 {
	 origin.print();
 }
}

 Shape* shapes[2];

 shapes[0] = new Ellipse(Point (1,1), 10);
 shapes[1] = new Rectangle(Point(2,2), 20, 10);

 for (int i=0; i<2; i++)
 {
 shapes[i]->draw();
 }

X: 1 Y: 1X: 2 Y: 2

• If class shape is not pure virtual
the code will compile, but it will
fail at run time: When the list is
iterated to draw all the shapes,
it will be shape::draw() which is
called each time instead of
ellipse::draw() and
rectangle::draw().

• This is because the insertions
into the list entail a copy of the
object: shapeList.push_back()
will do call
shape::operator=(&shape) with
the ellipse object as a
parameter.

Monday 12 March 12

Reconsider...

8

 Ellipse e(Point (1,1), 10);
 Rectangle r(Point(2,2), 20, 10);

 Shape shapes[2];

 shapes[0] = e;
 shapes[1] = s;

 for (int i=0; i<2; i++)
 {
 shapes[i].draw();
 }

../src/poly1.cpp: In function 'void polytest()':

../src/poly1.cpp:62: error: invalid abstract type 'Shape' for 'shapes'

../src/poly1.cpp:16: note: because the following virtual functions are pure within 'Shape':

../src/poly1.cpp:22: note: 	virtual void Shape::draw()

Monday 12 March 12

Pointers?

9

 Shape* shapes[2];

 shapes[0] = new Ellipse(Point (1,1), 10);
 shapes[1] = new Rectangle(Point(2,2), 20, 10);

 for (int i=0; i<2; i++)
 {
 shapes[i]->draw();
 }

Ellipse with Origin: X: 1 Y: 1 and Radius: 10
Rectangle with Origin: X: 2 Y: 2 and Width: 20 Height: 10

Monday 12 March 12

Pointers to local variables...

10

 Ellipse e(Point (1,1), 10);
 Rectangle r(Point(2,2), 20, 10);

 Shape* shapes[2];
 shapes[0] = &e;
 shapes[1] = &r;

 for (int i=0; i<2; i++)
 {
 shapes[i]->draw();
 }

Ellipse with Origin: X: 1 Y: 1 and Radius: 10
Rectangle with Origin: X: 2 Y: 2 and Width: 20 Height: 10

Monday 12 March 12

• It becomes apparent that one level of indirection is needed to solve the problem.

• An obvious solution is to change the list of shapes to a list of pointers to shapes

11

 list <Shape*> shapeList;

 shapeList.push_back(&e);
 shapeList.push_back(&r);

 foreach (Shape *s, shapeList)
 {
 s->draw();
 }

•This solution seems to work, but it will likely lead to run time errors, for if variables
e and are automatic, they will be destructed at end of their blocks.

•If the list's scope lives on past the end of this block, it will be left containing
invalid objects (pointers to arbitrary places in or beyond the stack)

Monday 12 March 12

• One possible solution is to insist that any object placed in such a list must be
allocated from the heap:

• Besides the fact that unsuspecting programmers might not read the
documentation and violate this rule, this solution leaves open another problem.

• When the list is destructed, it will leave all of its referenced objects on the heap
without calling their destructors or deallocating their memory.

• One could always subclass list < shape* > and destroy the contained objects in
the subclass's destructor, but this would defeat a lot of the convenience of using
STL's containers: one would have to write a lot of simple constructors and a new
destructor for every variation of an STL container.

12

 shapeList.push_back(new Ellipse(Point (1,1), 10));
 shapeList.push_back(new Rectangle(Point(2,2), 20, 10));

Monday 12 March 12

A reasonable solution

• An alternative
solution is to
change the
behavior of
pointers rather
than containers.

• One could
make a new
reference
template class
who's
destructor
would take care
of destructing
its referent.

13

template < class T >
class Ref2
 {
 public:
 Ref2(const T &s) {KillData = true; t = s.clone();}
 Ref2(T *s) {KillData = false; t = s;}
 Ref2(const Ref2 < T > &r) {KillData = true;
 t = r.t?r.t->clone():NULL;}
 ~Ref2() {if (t && KillData) delete t;}
 Ref2& operator= (const Ref2 < T > & r) {if (t && KillData) delete t;
 KillData = true;
 t = r.t?r.t->clone():NULL;
 return *this; }
 T* operator->() const {return t;}
 int operator< (const Ref2 < T > & r) const {return t?r.t?(*t) < (*r.t):false:true;}
 operator T&() const {return *t;}
 operator T*() const {return t;}
 T& operator*() const {return *t;}
 protected:
 T *t;
 private:
 bool KillData;
 };

Monday 12 March 12

Shape & Decedents
must implement clone

14

struct Shape
{
 Point origin;

 Shape(Point p) : origin(p)
 {}

 virtual void draw()=0;
 virtual Shape* clone() const {return 0;};
};

struct Ellipse : public Shape
{
 int radius;

 Ellipse(Point o, int r) : Shape(o), radius(r)
 {}

 virtual void draw()
 {
 //...
 }
 Shape* clone() const
 {
 return new Ellipse(origin, radius);
 }
};

struct Rectangle : public Shape
{
 int width, height;

 Rectangle (Point topleft, int w, int h): Shape(topleft), width(w), height(h)
 {}

 virtual void draw()
 {
 //...
 }
 Shape* clone() const
 {
 return new Rectangle(origin, width, height);
 }
};

Monday 12 March 12

• the T& constructor is called which
sets KillData to true;

• this means that when shapeList
is destroyed,

• it will call the destructors of the
Ref2 objects which will in turn
destroy the referent objects

15

 list <Ref2 <Shape> > shapeList;
 shapeList.push_back(Ellipse(Point (1,1), 10));
 shapeList.push_back(Rectangle(Point(2,2), 20, 10));

Monday 12 March 12

• one can also signal the class not
to destroy the object (if that is
what is needed) by using the T*
constructor instead:

16

 static Ellipse persistentEllipse(Point(20,20), 22);
 shapeList.push_back(&persistentEllipse);

Monday 12 March 12

• When using the iterators of
shapeList, one must pay attention
to the extra level of indirection:

17

 list < Ref2 < Shape > >::iterator i;
 for (i=shapeList.begin(); i!=shapeList.end(); i++)
 (*i)->draw();

 foreach (Shape *s, shapeList)
 {
 s->draw();
 }

Monday 12 March 12

• One of problems with this solution is that it defeats a lot of the efficiency of the STL.

• The STL goes to great lengths to efficiently store its objects in blocks (separating
memory allocation/deallocation and construction/destruction). T

• he Ref2class blatantly allocates and deallocates its referents one at a time!

• Run time efficiency is also compromised by the extra level of indirection.

18

Monday 12 March 12

Alternative:Pointer Container Library

19

#include <boost/ptr_container/ptr_list.hpp>
using namespace boost;

 ptr_list <Shape> shapeList;

 shapeList.push_back(new Ellipse(Point (1,1), 10));
 shapeList.push_back(new Rectangle(Point(2,2), 20, 10));

Monday 12 March 12

20

 foreach (Shape &s, shapeList)
 {
 s.draw();
 }

 ptr_list <Shape>::iterator i;
 for (i=shapeList.begin(); i!=shapeList.end(); i++)
 i->draw();

Monday 12 March 12

