
Normals

OpenGL

Which Way is Up?

• When you specify a light source, tell OpenGL where it is and in which
direction it’s shining.

• Often, the light source shines in all directions, but it can be directional.

• Either way, for any object, the rays of light from any source (other than a pure
ambient source) strike the surface of the polygons that make up the object at
an angle.

• In the case of a directional light, the surfaces of all polygons might not
necessarily be illuminated.

• To calculate the shading effects across the surface of the polygons, OpenGL
must be able to calculate the angle.

2

Angles

• A polygon (a square) is being struck by a
ray of light from some source.

• The ray makes an angle (A) with the
plane as it strikes the surface.

• The light is then reflected at an angle (B)
toward the viewer (or you wouldn’t see
it).

• These angles are used by OpenGL in
conjunction with the lighting and material
properties to calculate the apparent color
of that location

3

Calculating the Angles?

• From a programming standpoint, these lighting calculations present a slight
conceptual difficulty.

• Each polygon is created as a set of vertices, and each vertex is then struck by
a ray of light at some angle.

• How to calculate the angle between a point and a line (the ray of light)?

• Can’t geometrically find the angle between a single point and a line in 3D
space because there are an infinite number of possibilities.

• Therefore, you must associate with each vertex some piece of information
that denotes a direction upward from the vertex and away from the surface of
the primitive.

4

Surface Normals

• A line from the vertex in the upward direction starts in some imaginary plane
at a right angle.

• This line is called a normal vector.

• The imaginary plane is the surface of the polygon

5

Specifying Normals

• Eg a plane floating above the xz plane in 3D space

• The line through the vertex (1,1,0) that is
perpendicular to the plane.

• Select a point on this line, say (1,10,0), the line
from the first point (1,1,0) to the second point
(1,10,0) is our normal vector.

• The second point specified actually indicates that
the direction from the vertex is up in the y
direction.

• This convention is also used to indicate the front
and back sides of polygons, as the vector travels
up and away from the front surface.

6

Normal Vector

• This second point is the number of units in the x, y, and z directions for some
point on the normal vector away from the vertex.

• Rather than specify two points foreach normal vector, we can subtract the
vertex from the second point on the normal, yielding a single coordinate
triplet that indicates the x, y, and z steps away from the vertex.

• For our example, this is(1,10,0) – (1,1,0) = (1 – 1, 10 – 1, 0) = (0,9,0)

7

Normalised

• If the vertex were translated to the
origin, the point specified by
subtracting the two original points
would still specify the direction
pointing away and at a 90°angle
from the surface.

• The vector is a directional quantity
that tells OpenGL which direction
the vertices (or polygon) face

8

Specifying Normals to OpenGL

• The function glNormal3f takes the
coordinate triplet that specifies a normal
vector pointing in the direction
perpendicular to the surface of this triangle.

• Here, the normals for all three vertices have
the same direction, which is down the
negative y-axis.

• A simple example because the triangle is
lying flat in the xz plane, and it actually
represents part of the nose cone of our
model jet.

9

 glBegin(GL_TRIANGLES);
 glNormal3f(0.0f, -1.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 60.0f);
 glVertex3f(-15.0f, 0.0f, 30.0f);
 glVertex3f(15.0f, 0.0f, 30.0f);
 glEnd();

Vector3 noseCone[][3] =
{ { Vector3 (0.0, 0.0, 6.0),
 Vector3 (-1.5, 0.0, 3.0),
 Vector3 (1.5, 0.0, 3.0) },
 { Vector3 (1.5, 0.0, 3.0),
 Vector3 (0.0, 1.5 , 3.0),
 Vector3 (0.0, 0.0, 6.0) },
 { Vector3 (0.0, 0.0, 6.0),
 Vector3 (0.0, 1.5, 3.0),
 Vector3 (-1.5, 0.0, 3.0) }
};

Recap: Winding

• Take special note of the order of
the vertices in the jet’s triangle.

• If you view this triangle being
drawn from the direction in which
the normal vector points, the
corners appear counter clockwise
around the triangle.

• This is called polygon winding.

• By default, the front of a polygon
is defined as the side from which
the vertices appear to be wound
in a counterclockwise fashion.

10

 glBegin(GL_TRIANGLES);
 glNormal3f(0.0f, -1.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 60.0f);
 glVertex3f(-15.0f, 0.0f, 30.0f);
 glVertex3f(15.0f, 0.0f, 30.0f);
 glEnd();

Unit Normals

• A unit normal is just a normal vector that has a
length of 1.

• All surface normals must eventually be
converted to unit normals.

• Normalization:

• Calculate length: square each component,
add them together, and take the square root.

• Divide each component of the normal by the
length

11

V[3 1 2]
 x = 3,
 y = 1,
 z = 2,

length = sqrt((ax * ax) + (ay * ay) + (az * az))
length = sqrt(9 + 1 + 4) = 3.742

 x = 3.0 / 3.742 = 0.802
 y = 1.0 / 3.742 = 0.267
 z = 2.0 / 3.742 = 0.534

V[0.8, 0.27. 0.534]

OpenGL Normalize Computation

• Instruct OpenGL to convert your normals to unit
normals automatically, by enabling normalization
with glEnable and a parameter of
GL_NORMALIZE:;

• This approach does, however, have performance
penalties on some implementations.

• May be better to calculate your normals ahead of
time as unit normals instead of relying on
OpenGL to perform this task.

• If applying scaling during a transformation, may
need to rescale the normals to keep lighting
effects consistent.

12

 glEnable(GL_NORMALIZE);

 glEnable(GL_RESCALE_NORMALS);

Finding a Normal
• Take three points that lie in the plane of the polygon (P1, P2 and P3).

• Define two vectors: V1 from P1 to P2, and V2 from P1 to P3.

• Two vectors in three-dimensional space define a plane, so the cross product of
V1 and V2 yields a vector is perpendicular to that plane - the Normal.

13

findNormal()

14

Vector3 findNormal(const Vector3& point1, const Vector3& point2, const Vector3& point3)
{
 Vector3 v1, v2;

 // Calculate two vectors from the three points. Assumes counter clockwise winding
 v1.X = point1.X - point2.X;
 v1.Y = point1.Y - point2.Y;
 v1.Z = point1.Z - point2.Z;

 v2.X = point2.X - point3.Z;
 v2.Y = point2.Y - point3.Y;
 v2.Z = point2.Z - point3.Z;

 // Take the cross product of the two vectors to get he normal vector.
 Vector3 result;
 result.X = v1.Y * v2.Z - v2.Y * v1.Z;
 result.Y = -v1.X * v2.Z + v2.X * v1.Z;
 result.Z = v1.X * v2.Y - v2.X * v1.Y;
 return result;
}

Generate Normals

• Compute the normal and send to pipeline in advance of the vertices.

15

void render (Vector3 vectors[][3], int size)
{
 for (int i=0; i<size; i++)
 {
 glBegin(GL_TRIANGLES);
 Vector3 normal = findNormal(vectors[i][0], vectors[i][1], vectors[i][2]);
 glNormal3f(normal.X, normal.Y, normal.Z);
 vectors[i][0].render();
 vectors[i][1].render();
 vectors[i][2].render();
 glEnd();
 }
}

