
Textures

Need for Textures

• Although graphics cards can render millions of polygons per second, that
number is insufficient for many phenomena

• Clouds

• Grass

• Terrain

• Skin

• A source for these phenomena could be image data

• Image data generally has a one-to-one correspondence between a pixel in an
image and a pixel on the screen

• When we apply image data to a geometric primitive, we call this a texture or
texture map

2

Example

• Consider the problem of modeling an orange (the fruit)

• Start with an orange-colored sphere

• Too simple

• Replace sphere with a more complex shape

• Does not capture surface characteristics (small dimples)

• Takes too many polygons to model all the dimples

• Take a picture of a real orange, scan it, and “paste” onto simple geometric
model

• This process is known as texture mapping - uses images to fill inside of
polygons

3

Pipeline

• Mapping techniques are implemented at the end of the rendering pipeline

4

Mapping

• Although the idea is simple---map an
image to a surface---there several
coordinate systems involved

5

2D image

3D surface

At Least 3 Co-ordinate systems

Texture
coordinate -
used to
identify points
in the image
to be mapped

6

Object or World
Coordinates -
conceptually, where
the mapping takes
place

Window
Coordinates -
where the final
image is really
produced

Mapping Textures to Geometry

• Loading a texture and enabling texturing cause OpenGL to apply the texture
to any of the OpenGL primitives.

• You must, however, provide OpenGL with information about how to map the
texture to the geometry. You do this by specifying a texture coordinate for
each vertex - Textels

• Texels in a texture map are addressed not as a memory location (as you
would for pixmaps), but as a more abstract (usually floating-point values) -
texture coordinate.

7

Texture Coordinates - Textels
• Typically, texture coordinates are specified as floating-point values that are in

the range 0.0 to 1.0.

• Texture coordinates are named s, t, r, and q (similar to vertex coordinates x, y,
z, and w), supporting from one- to three-dimensional texture coordinates, and
optionally a way to scale the coordinates.

8

• You specify a texture
coordinate using the
glTexCoord function. Much
like vertex coordinates,
surface normals, and color
values.

• One texture coordinate is
applied using these
functions for each vertex.
OpenGL then stretches or
shrinks the texture as
necessary to apply the
texture to the geometry as
mapped.

9

void glTexCoord2f(Glfloat s, GLfloat t);

Image Formats

• We often work with images in a standard format (JPEG, TIFF, GIF)

• How do we read/write such images with OpenGL?

• No support in OpenGL

• OpenGL knows nothing of image formats

• Can write readers/writers for some simple formats in OpenGL

10

Simple OpenGL Image Library (SOIL) - Features

• Readable Image Formats:
• BMP, PNG, JPG, TGA etc...

• Writeable Image Formats:
• TGA, BMP etc...

• Can load an image file directly into a 2D OpenGL texture, optionally
performing the following functions:

• Can generate a new texture handle, or reuse one specified
• Can automatically rescale the image to the next largest power-of-two size
• Can flip the image vertically
• No external dependencies
• Cross platform (Windows, *nix, Mac OS X)

11

http://www.lonesock.net/soil.html

http://www.lonesock.net/soil.html
http://www.lonesock.net/soil.html

ImageCube

12

struct ImageCube: public Actor
{
 int imageID;

 ImageCube();
 void render();
};

City.png

• Use SOIL to
load as a
‘texture’

13

#include "SOIL.h"
...
imageID = loadTexture("city.png");

glBindTexture

• Enable Textures

• Set polygon mode to FILL

• ‘Bind’ a specific texture via its ID

• Generate the geometry

14

ImageCube::ImageCube()
{
 imageID = loadTexture("city.png");
}

void ImageCube::render()
{
 glPolygonMode(GL_FRONT,GL_FILL);
 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, imageID);

 glBegin(GL_QUADS);
 for (int i=0; i<6; i++)
 {
 drawFace(thevertices[i]);
 }
 glEnd();

 glDisable(GL_TEXTURE_2D);
 glPolygonMode(GL_FRONT,GL_LINE);
}

struct ImageCube: public Actor
{
 int imageID;

 ImageCube();
 void render();
};

The geometry

• Simple Unit Cube - Vertices only

15

Vector3 thevertices[][6] =
{
 { Vector3(-1.0f, 1.0f, 1.0f), Vector3(-1.0f, -1.0f, 1.0f), Vector3(1.0f, -1.0f, 1.0f), Vector3(1.0f, 1.0f, 1.0f) },
 { Vector3(1.0f, 1.0f,-1.0f), Vector3(1.0f, -1.0f,-1.0f), Vector3(-1.0f, -1.0f,-1.0f), Vector3(-1.0f, 1.0f, -1.0f) },
 { Vector3(-1.0f, 1.0f,-1.0f), Vector3(-1.0f, 1.0f, 1.0f), Vector3(1.0f, 1.0f, 1.0f), Vector3(1.0f, 1.0f, -1.0f) },
 { Vector3(1.0f,-1.0f,-1.0f), Vector3(1.0f, -1.0f, 1.0f), Vector3(-1.0f, -1.0f, 1.0f), Vector3(-1.0f,-1.0f, -1.0f) },
 { Vector3(1.0f,-1.0f, 1.0f), Vector3(1.0f, -1.0f,-1.0f), Vector3(1.0f, 1.0f,-1.0f), Vector3(1.0f, 1.0f, 1.0f) },
 { Vector3(-1.0f, 1.0f, 1.0f), Vector3(-1.0f, 1.0f, -1.0f), Vector3(-1.0f, -1.0f,-1.0f), Vector3(-1.0f, -1.0f, 1.0f) }
};

void ImageCube::render()
{
 //...
 for (int i=0; i<6; i++)
 {
 drawFace(thevertices[i]);
 }
 //...
}

drawFace - glTextCoord

• Render and resize the image to fit the 6 faces of the cube.

16

void drawFace(Vector3 vertices[])
{
 glTexCoord2f(0.0, 0.0);
 vertices[0].render();
 glTexCoord2f(0.0, 1.0);
 vertices[1].render();
 glTexCoord2f(1.0, 1.0);
 vertices[2].render();
 glTexCoord2f(1.0, 0.0);
 vertices[3].render();
}

 actorName = "imagecube";
 actors.insert(actorName, new ImageCube());

in Scene:

Quadrics

• The OpenGL Utility Library (GLU) that accompanies OpenGL contains a
number of functions that render three quadratic surfaces.

• These quadric functions render spheres, cylinders,and disks.

• You can specify the radius of both ends of a cylinder. Setting one end’s radius
to 0 produces a cone.

17

Setting Quadric States

• The quadric surfaces can be drawn with
some flexibility as to whether normals,
texture coordinates, and so on are
specified.

• Putting all these options into parameters
to a sphere drawing function, for
example, would create a function with
an exceedingly long list of parameters
that must be specified each time.

• Instead, the quadric functions use an
object oriented model. Essentially, you
create a quadric object and set its
rendering state with one or more state
setting functions

18

 GLUquadric *qobj = gluNewQuadric();
 // Set Quadric rendering Parameters
 // Draw Quadric
 gluDeleteQuadric(qobj);

Sphere

• The first parameter, obj, is just the pointer to the
quadric object that was previously set up for the
desired rendering state.

• The radius parameter is then the radius of the
sphere, followed by the number of slices and
stacks. Spheres are drawn with rings of triangle
strips stacked from the bottom to the top.

• The number of slices specifies how many triangle
sets (or quads) are used to go all the way around
the sphere.

• You could also think of this as the number of lines
of latitude and longitude around a globe.

19

void gluSphere(GLUQuadricObj *obj, GLdouble radius, GLint slices, GLint stacks);

Planets

• Define three spheres

• Locate suitably ‘stretched’
image files

• Load and bind the texture

• Generate the appropriate
texture co-ordinates

• Render

20

JHTs Planetary Emporium

21

http://planetpixelemporium.com/planets.html

http://planetpixelemporium.com/planets.html
http://planetpixelemporium.com/planets.html

• Earth

22

• Jupiter

• Venus

23

Sphere

24

struct Sphere: public Actor
{
 int imageID;
 Vector3 position;

 Sphere(Vector3 position, std::string imagefile);
 void render();
};

Sphere::Sphere(Vector3 position, string imagefilename)
: position (position)
{
 imageID = loadTexture(imagefilename);
}

void Sphere::render()
{
 glPolygonMode(GL_FRONT,GL_FILL);
 glEnable(GL_TEXTURE_2D);

 GLUquadric *qobj = gluNewQuadric();
 gluQuadricTexture(qobj,GL_TRUE);
 glBindTexture(GL_TEXTURE_2D, imageID);

 gluSphere(qobj,1,50,50);

 gluDeleteQuadric(qobj);

 glPolygonMode(GL_FRONT,GL_LINE);
 glDisable(GL_TEXTURE_2D);
}

25

