
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

BSc in Applied Computing

Web Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Semantic UI Usage

Key Features

http://learnsemantic.com/preface/whats-different.html

Build Responsive Layouts Easier

• Designed Completely with EM

• Every component is defined using em and rem so that
components can be resized simply on the fly.

Easy to Learn

• Descriptive not Prescriptive

• Writing front end code shouldn't require learning the
naming or programming conventions of a particular
developer.

• Instead of using short-hand, or codifying naming
conventions, Semantic uses simple, common language
for parts of interface elements, and familiar patterns
found in natural languages for describing elements.

Tag Agnostic

• Use whatever html tags you please.

• Interface definitions in Semantic are tag ambivalent.

• That means you can use div, article, section, span
without affecting the display of the element.

• Special tags like a, table, td still carry special meaning in
certain circumstances however.

Concise & Expressive

• Don't repeat yourself

• In English it's much easier to say "There are three tall
men" than "There is a tall man, a tall man and a tall man".

• Semantic elements use principles of plurality to express
similarities across groups to avoid repetitive declarations.

High-Level Theming

• All UI components share site-wide defaults which let you
quickly change the look and feel of components.

• High level variables make sure you aren't specifying one
to one matches with CSS properties.

Componentized UI

• Using Semantic doesn't mean adopting an entire
framework, or rewriting your code base

• Semantic components are written in a singular style, but
are not part of mandated overarching library. Only like a
couple components? No problem, use only what you need.

• UI components in Semantic also define optional and
required couplings with other components where their
usage intersect. That means for example, a popup can
check for the existence of CSS animation component
before using the fallback javascript animations.

Develop Once, Redesign Infinitely

• Creating a site in Semantic means you never have to
rewrite your codebase from scratch.

• Redesigning means retooling your UI toolkit, adjusting UI
definitions, not creating entirely new HTML layouts.

Using Semantic UI

“UI” Class
• UI definitions in

Semantic are given the
class name ui.

• This is to help tell the
difference between ui
elements and parts of
the definition of an
element.

• This means any element
with the class name UI
has a corresponding UI
definition.

Class Names
• Class names in

Semantic always use
single english words.

• If a class name is an
adjective it is either a
type of element or
variation of an element.

• CSS definitions always
define adjectives in the
context of a noun. In this
way class names cannot
pollute the namespace.

Combining Classes
• All UI definitions in

semantic are stand-alone,
and do not require other
components to function.

• However, components can
choose to have optional
couplings with other
components.

• For example you might
want to include a badge
inside a menu. A label
inside of a menu will
automatically function as a
badge

Variations
• A ui definition in

Semantic usually
contains a list of
mutually
exclusive
variations on an
element design.

• A type is
designated by an
additional class
name on a UI
element

Content/Structure
• Types may

require different
html structures
to work correctly.

• For example, an
icon menu might
expect different
content like
icons glyphs
instead of text to
be formatted
correctly

HTML Variations
• Types may also

each require
slightly different
html.

• For example, a
tiered menu
needs html
specified for a
sub menu to
display itself
correctly

More Variations
• A variation alters the design of an element but is not mutually exclusive.

• Variations can be stacked together, or be used along with altering an
element's type.

• For example, having wide menus that take up the full width of its parent
may sometimes be overwhelming. You can use the compact variation
of a menu to alter its format to only take up the necessary space.

Intersecting Variations

• The definition for the variation red contains css
specifically for describing the intersection of both red
and inverted.

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

