
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Web Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Models & Databases

Web Development with Play

Forms	 & Databases

• Take the various parameters conveyed through a form and:

• Formulate a Java class to hold these values

• Create an instance of this class

• Store this instance in a database

• In subsequent interaction consult this database an recover the instance if
necessary

• These type of classes are called ‘Models’

3

Purpose of the User Model

• A class that will represent details for a singe user.

• Every time a new user ‘registers’ with the site, create a new User object and
store in the database

• Every time a user tries to log in, ask the database if we have a matching User
object (with same email/password).

• If we do, let this user in to the site.

• If not, then keep user out until correct ‘credentials’ provided.

4

Database Models

• We would like to register new users in a database

• In Play, these are represented using ‘Models’

• Each table in a database can be represented by a
java class

• Instances of this class (objects) will represent rows
in the corresponding table

5

User Model

• Simple class to represent a
user

• Public attributes represent
fields

• Class ‘extends’ Model and is
marked with @Entity
annotation to indicate that it is
to be saved to a database

• How this is done not our
concern

6

package models;

import javax.persistence.Entity;

import play.db.jpa.Model;

@Entity
public class User extends Model
{
 public String firstName;
 public String lastName;
 public String email;
 public String password;

 public User(String firstName, String lastName,
 String email, String password)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.password = password;
 }
}

Saving Objects to a Database

• In register (called when user ‘submits’ signup form):

• Create a new User object

• Save it!

7

 public static void register(String firstName, String lastName,
 String email, String password)
 {
 Logger.info(firstName + " " + lastName + " " + email + " " + password);

 User user = new User (firstName, lastName, email, password);
 user.save();

 index();
 }

Saving Objects to a Database

• Create new Java Object of type User, initialized with appropriate
attributes

• Save this new object in the database

8

 //...

 User user = new User (firstName, lastName, email, password);
 user.save();

 //...

Database Configuration

• The Database will be ‘in memory’

• Specified in ‘conf/application.conf’

9

Database configuration
~~~~~
Enable a database engine if needed.
#
To quickly set up a development database, use either:
- mem : for a transient in memory database (H2 in memory)
- fs : for a simple file written database (H2 file stored)

db=mem

Built in Database for test
purposes

• Play comes with a database - which is a full relational db like MySql

• ‘Transient’ - so all values are lost between program executions 10

Browse/Edit/update...

• Enable in configuration:

• db=mem

• This means ‘in memory’ database

• Then just browse to:

• http://localhost:9000/@db

• when application is running

11

http://localhost:9000/@db

User Model• import libraries containing
‘annotations’ which are used to
‘mark’ classes with specific
database-aware features

• Model base class ensures each
object will have a unique ID +
general purpose methods for :

• find

• save

• ‘@Entity’ implies that this class
will be represented by a table in
the database, with individual
objects occupying each row

12

package models;

import javax.persistence.Entity;
import play.db.jpa.Model;

@Entity
public class User extends Model
{
 public String firstName;
 public String lastName;
 public String email;
 public String password;

 public User(String firstName, String lastName,
 String email, String password)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.password = password;
 }
}

Cloudbees Database

• In Cloudbees you can
create a database that
will not me ‘transient’

• This will require new
configuration on the
conf/application.conf
file:

13

• When you deploy the app, it will
not connect to this external
database

#db=mem

db.url=jdbc:mysql://ec2-176-34-253-124.compute.amazonaws.com:3306/spacebook_db
db.driver=com.mysql.jdbc.Driver
db.user=spacebook_yourusername
db.pass=secret
jpa.ddl=create

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

