
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Web Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Sessions

Web Development

How to Make an Application out of a Web Page?

• On the internet, a web page is a web page is a web page…

• If you surf from ./page1.html to ./page2.html these are two unique requests.

• The server doesn‘t know anything about the fact that both pages are visited
by the same user.

• Sessions are the technique used to logically group several requests into a
“group“ (called a session)

• If you start a session, the server will know that it‘s still the same user who
surfed from ./page1.html to ./page2.html

3

Sessions

• HTTP itself is “stateless”

• no state stored on the server between requests from the same client

• but many web apps are stateful

• necessary to connect requests from the same user / browser / browser-
window, e.g. shopping cart, appointments calendar etc...

• Session

• multiple requests performed in a stateful context

• Session tracking

• technique that allows sessions in stateless environments

4

Session Tracking / Handling
• User surfs to http://demo.com

• Server (on 1st request / if no sessionID stored on client)

• generates unique session id, which is mapped to ...

• ... a session-object

• stored in memory (lost on shutdown), in a file or in database

• can contain anything (list of articles, game state, counters, ...)

• Session id is added to the response

• from now on:

• each subsequent request from the same user (browser) must contain
the session id ...

• ... which is used by the server to map to the session-object

• No data gets stored on the client, except SessionID
5

http://dev.webtech2010.com

Session Tracking Techniques

• Cookies

• Hidden Form Fields

• URL Rewrite

6

Cookies

1. Server creates a cookie with session-id on first request

2. Server maps id to a new user-specific session object

3. The session-id is sent to the client with the first response

4. ..and automatically added by the browser on each further request (to the
same address/domain/…)

5.Server receives request + cookie with session-id

6.Server maps session-id to session-object

• Potential problems:

• users may disallow the usage of cookies in their browsers

7

URL Rewrite

• Basic idea:

• Server adds the session-id to all links the user can follow

• http://server/myhome

• is changed to

• http://server/myhome?sessionid=123

• session-id must be dynamically added

• functionality usually offered by scripting frameworks

• Pro

• simple, works with every browser (no cookies required)

• Contra

• all URLs in response pages must add session-id

• URL displayed in browser is the rewritten URL

8

http://server/MyServlet
http://server/MyServlet?sessionid=123

Hidden Form Fields

• In HTML, we can define "hidden" fields in a form

• <input type="hidden" name="sessionid" value="123">

• These fields are not visible and cannot be changed by the client

• Usage:

• server creates a session-object for each client and generates a unique ID

• When HTML documents are created and sent back, the hidden form field

is automatically generated containing the actual ID

• Upon form submit, the session ID is automatically sent back to the server

• The server can associate this call with an already existing session

• Pro:

• Simple, works with every browser (no cookies required)

• Contra:

• Form must be added to all pages

• Form must be submitted at each request to the server

9

Web Frameworks	

• Cookies generally preferred.

• However, framework will try to ‘abstract away’ specific session management
technology, and deliver simpler abstraction to the programmer

• Framework may in fact be able to switch between different techniques
depending on circumstances.

10

Login

11

POST /authenticate Accounts.authenticate

 public static void authenticate(String email, String password)
 {
 Home.index();
 }

 <form action="/authenticate" method="POST">
 <div class="field">
 <label> Username: </label>
 <input type="text" name="email">
 </div>
 <div class="field">
 <label> Password: </label>
 <input type="password" name="password">
 </div>
 <button class="ui blue submit button">Login</button>
 </form>

Authenticate Action

• Need to decide whether to allow a user to log in (they must register first), and
subsequently 'remember' which user has logged in.

• In the authenticate method, see if the given user is registered or not.

• If they are registered, place the user 'id' into a 'session' object

• This session object will be available to other controllers during subsequent
page visits.

12

 public static void authenticate(String email, String password)
 {
 ...
 }

Extend User
Class

2 new methods:

Search for a User
object matching a

specific email

Check if a given
objects password

matches a specific
password.

13

public class User extends Model
{
 public String firstName;
 public String lastName;
 public String email;
 public String password;

 public User(String firstName, String lastName,
 String email, String password)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.password = password;
 }

 public static User findByEmail(String email)
 {
 return find("email", email).first();
 }

 public boolean checkPassword(String password)
 {
 return this.password.equals(password);
 }

}

Authenticate Action

• user.id

• Although the class User does not explicitly have a field called ‘id’, because User is a
‘model’ class - and id field is always generated.

• This is unique - and we will use it widely in the application.
14

 public static void authenticate(String email, String password)
 {
 Logger.info("Attempting to authenticate with " + email + ":" + password);

 User user = User.findByEmail(email);
 if ((user != null) && (user.checkPassword(password) == true))
 {
 Logger.info("Authentication successful");
 session.put("logged_in_userid", user.id);
 Home.index();
 }
 else
 {
 Logger.info("Authentication failed");
 login();
 }
 }

 public static void authenticate(String email, String password)
 {
 Logger.info("Attempting to authenticate with " + email + ":" + password);

 User user = User.findByEmail(email);

 if ((user != null) && (user.checkPassword(password) == true))

 {
 Logger.info("Authentication successful");
 session.put("logged_in_userid", user.id);

 Home.index();
 }

 else

 {
 Logger.info("Authentication failed");
 login();
 }

 }

Authenticate

Search for matching
user

If one is found, see if
password matches

if they match, store
user ‘id’ in ‘session’

Let user in to home
page

if not, revert to start
page

15

Sessions

• Every time a user make a ‘request’ - i.e.

• presses a link

• navigates to a new page

• submits a form

• The ‘action’ has no idea who the user is each time such a request arrives

• Remember - there may be hundreds or thousands of requests, from different
users, arriving concurrently.

16

Session Objects

• A mechanism whereby our program can ‘know’ who the ‘current’ user is.

• Implemented by a complex process involving ‘cookies’, ip address, + various
other techniques.

• Simplified for the programer in Play as follows:

17

session.put("logged_in_userid", user.id);
• If we ‘know’ who the

user is, then we store
the id in the ‘session’
object:

• Later, in another action,
if we want to find out
who the is, we ask the
session object:

String userId = session.get("logged_in_userid");
User user = User.findById(Long.parseLong(userId));
String name = user.firstName;

Session - put and set
• put into the session

object the user.id value
at the key
‘logged_in_userid’

• Ask the session for the
value corresponding to
the key
‘logged_in_userid’

• Use that value to look
up the database for a
corresponding user
object

• Get the name of the
user from the user
object

18

session.put("logged_in_userid", user.id);

String userId = session.get("logged_in_userid");

User user = User.findById(Long.parseLong(userId));

String name = user.firstName;

Home Page Heading

• Once a user is successfully
logged in, we would like to
display the user name in the
title of some of the pages.

• Currently ‘hard coded’ to
“Homer Simpson”

19

public class Home extends Controller
{
 public static void index()
 {
 render();
 }

controllers/Home.java
views/Home/index.html

...
 <h2 class="ui header">SpaceBook: Home page for homer simpson </h2>
...

• Assuming the user is ‘logged in’,

• retrieve the user identity from the session

• look up the database of users to get the user object

• get the user name

• pass the name to the view

20

 public static void index()
 {
 String userId = session.get("logged_in_userid");
 User user = User.findById(Long.parseLong(userId));
 render(user);
 }

controllers/Home.java

views/Home/index.html

 <h2 class="ui header">SpaceBook: Home page for ${user.firstName} ${user.lastName}</h2>

Home
Profile Title
(hardcoded)

21

 public static void index()
 {
 render();
 }

 <h1>Homers's Profile</h1>

Home
Profile Title
(Dynamic)

22

 public static void index()
 {
 String userId = session.get("logged_in_userid");
 User user = User.findById(Long.parseLong(userId));
 render(user);
 }

 <h1>${user.firstName} 's Profile</h1>

Destroy the Session

• In the corresponding action, delete the session

23

 public static void logout()
 {
 session.clear();
 index();
 }

• Any attempts to recover the information from the session object will fail

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

