Web Development

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology 0 elLearning .
support uni

c;‘.l\ - INSTITIOID TECNEOLAIOCHTA PHORT LARCE
I3 —

i i

mailto:edleastar@wit.ie

Sessions

Web Development

How to Make an Application out of a Web Page”

- On the internet, a web page is a web page is a web page...
- If you surf from ./pagel.html to ./page2.html these are two unique requests.

« The server doesn‘t know anything about the fact that both pages are visited
by the same user.

« Sessions are the technique used to logically group several requests into a
“group” (called a session)

- If you start a session, the server will know that it‘s still the same user who
surfed from ./pagel.html to ./page2.html

Sessions

« HTTP itself is “stateless”
- no state stored on the server between requests from the same client
+ but many web apps are stateful

« necessary to connect requests from the same user / browser / browser-
window, e.g. shopping cart, appointments calendar etc...

e Session
- multiple requests performed in a stateful context
e Session tracking

- technique that allows sessions in stateless environments

Session Tracking / Handling

« User surfs to http://demo.com

- Server (on 1st request / if no sessionlD stored on client)
* generates unique session id, which is mapped to ...
* ... a session-object
- stored in memory (lost on shutdown), in a file or in database
 can contain anything (list of articles, game state, counters, ...)
« Session id is added to the response
» from now on:

 each subsequent request from the same user (browser) must contain
the session id ...

* ... Which is used by the server to map to the session-object

- No data gets stored on the client, except SessionlD

http://dev.webtech2010.com

Session Tracking Techniques

« Cookies
 Hidden Form Fields

« URL Rewrite

Cookies

1. Server creates a cookie with session-id on first request
2. Server maps id to a new user-specific session object
3. The session-id is sent to the client with the first response

4. ..and automatically added by the browser on each further request (to the
same address/domain/...)

5.Server receives request + cookie with session-id
6.Server maps session-id to session-object
« Potential problems:

 users may disallow the usage of cookies in their browsers

URL Rewrite

 Basic idea:
« Server adds the session-id to all links the user can follow
- http://server/myhome
* Is changed to
- http://server/myhome?sessionid=123
 session-id must be dynamically added
- functionality usually offered by scripting frameworks
* Pro
- simple, works with every browser (no cookies required)
- Contra
- all URLs in response pages must add session-id
- URL displayed in browser is the rewritten URL

http://server/MyServlet
http://server/MyServlet?sessionid=123

Hidden Form Fields

* I[n HTML, we can define "hidden" fields in a form
 <input type="hidden" name="sessionid" value="123">
- These fields are not visible and cannot be changed by the client
« Usage:
* server creates a session-object for each client and generates a unique ID

- When HTML documents are created and sent back, the hidden form field
Is automatically generated containing the actual ID

- Upon form submit, the session ID is automatically sent back to the server
- The server can associate this call with an already existing session
* Pro:
- Simple, works with every browser (no cookies required)
- Contra:
* Form must be added to all pages
« Form must be submitted at each request to the server

Web Frameworks

« Cookies generally preferred.

- However, framework will try to ‘abstract away’ specific session management
technology, and deliver simpler abstraction to the programmer

* Framework may in fact be able to switch between different techniques
depending on circumstances.

10

Login

® O 6 > Login to Spacebook x R

€« C A [localhost:9000/login

Qs ©

f? B

Signup Login

Username:

Password:

<form action="/authenticate"” method="POST">
<div class="field">
<label> Username: </label>
<input type="text" name="email">
</div>
<div class="field">
<label> Password: </label>
<input type="password" name="password">

</div>
<button class="u1i blue submit button">Login</button>

</form>

"lII'J

POST

/authenticate

Accounts.authenticate

{
¥

Home.1index();

public static void authenticate(String email, String password)

11

Authenticate Action

public static void authenticate(String email, String password)

{

}...

- Need to decide whether to allow a user to log in (they must register first), and
subsequently 'remember’ which user has logged in.

- In the authenticate method, see if the given user is registered or not.
- If they are reqistered, place the user 'id"' into a 'session’ object

 This session object will be available to other controllers during subsequent
page Vvisits.

12

—xtend User
Class

2 hew methods:

Search for a User
object matching a
specific emall

Check if a given
objects password
matches a specific
password.

public class User extends Model

{

public
public
public
public

public

{
this.

this.
this.
this.

}

public
{

String firstName;
String lastName;
String email;

String password;

User(String firstName, String lastName,
String email, String password)

firstName = firstName;
lastName = lastName;
email = email;
password = password;

static User findByEmail(String email)

return find("email", email).firstQ);

}

public
{

boolean checkPassword(String password)

return this.password.equals(password);

}

13

Authenticate Action

public static void authenticate(String email, String password)

{

Logger.info("Attempting to authenticate with " + email +

+ password);

User user = User.findByEmail(email);
1f ((Cuser !'= null) && (user.checkPassword(password) == true))
{
Logger.info("Authentication successful");
session.put("logged_in_userid", user.id);
Home.1index();

}

else

{
Logger.info("Authentication failed");
loginQ);
¥
¥

« user.id

 Although the class User does not explicitly have a field called ‘id’, because User is a
‘model’ class - and id field is always generated.

 This is unique - and we will use it widely in the application.

14

Authenticate

public static void authenticate(String email, String password)
{
Logger.info("Attempting to authenticate with " + email + ":" +
e : A
earch for matchin . . .
S 9 User user = User.findByEmail(email);
N user)
e A
If one is found, see if
password matches 1f (Cuser != null) && (user.checkPassword(password) == true))
. /
" if they match, store ; A
user ‘id’ in ‘session’ Logger.info("Authentication successful™);
session.put("logged_in_userid", user.id);
Let user in to home
age
pag Home.1index();
S hy
4 else
if not, revert to start ‘
age : : : :
pag Logger.info("Authentication failed");
login();
N ¥ T,

Sessions

« Every time a user make a ‘request’ - i.e.
 presses a link
* navigates to a new page
« submits a form
« The ‘action’ has no idea who the user is each time such a request arrives

- Remember - there may be hundreds or thousands of requests, from different
users, arriving concurrently.

16

Session Objects

* A mechanism whereby our program can ‘know’ who the ‘current’ user is.

» Implemented by a complex process involving ‘cookies’, ip address, + various

other techniques.

- Simplified for the programer in Play as follows:

* |[f we ‘know’ who the
user is, then we store
the id in the ‘session’
object:

« Later, in another action,
If we want to find out
who the is, we ask the
session object:

session.put("logged_in_userid", user.id);

String userId = session.get("logged_in_userid");
User user = User.findById(Long.parseLong(userld));
String name = user.firstName;

17

Session - put and set

 put into the session

object the user.id value session.put("logged_in_userid", user.id);

at the key
‘logged_in_userid’

« Ask the session for the

String userld = session.get("logged_in_userid");

value corresponding to

the key
‘logged_in_userid’

« Use that value to look

User user = User.findById(Long.parseLong(userld));

up the database for a
corresponding user
object

. Get the name of the String name = user.firstName;

user from the user

object
18

Home Page Heading

« Once a user is successfully
logged in, we would like to
display the user name in the
title of some of the pages. Friends

» marge, (drop)
» lisa, (drop)

 Currently ‘hard coded’ to
“Homer Simpson”

Home Members Profile

Logout

SpaceBook: Home page for homer simpson

Messages

» marge says..."Hey there Homer, when are you
going to work?"

» lisa says..."Move off the couch dad!"

<h?2 class="u1l header">SpaceBook: Home page for homer simpson </hZ2>

views/Home/index.html

public class Home extends Controller

{

public static void index()

{

render();

}

controllers/Home.java

19

controllers/Home.java public static void index()

{
String userId = session.get('logged in userid");
User user = User.findById(Long.parselLong(userId));
render (user) ;

}

views/Home/index.html

<h?2 class="ui header">SpaceBook: Home page for ${user.firstName} ${user.lastName}</hz2>

« Assuming the user is ‘logged in’,
» retrieve the user identity from the session
* look up the database of users to get the user object
 get the user name
+ pass the name to the view

20

Spacebook Home Members Profile Logout

Homer's Profile

Profile Image Status Text
lf""% Enter text:
vé\ A _._;":
I

Ny,

ChooserFile No file chosen

Change

Hormr

rOf]

e

e Title

ardcoded)

<h1>Homers's Profile</hl>

public static void index()

{
render();
ks

21

Spacebook Home Members Profile Logout

Homer's Profile

Profile Image Status Text

Enter text:

Change

Home
Profile Title
(Dynamic)

e — No file chosen

<h1>%${user.firstName} 's Profile</hl>

public static void index()

{

String userld = session.get("logged_in_userid");
User user = User.findBylId(Long.parselLong(userId));
render(user);

¥

22

Destroy the Session

* In the corresponding action, delete the session

public static void logout()
{

session.clear();
index();

¥

« Any attempts to recover the information from the session object will fail

23

Waterford Institute of Technology

.o INSTITIOID TECNEOLAIOCHTA PHORT LAIRGE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

i

elLearning
support unit

