
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Web Development

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Brenda Mullally (bmullally@wit.ie)

Siobhan Drohan (sdrohan@wit.ie)

mailto:edleastar@wit.ie
mailto:bmullally@wit.ie
mailto:sdrohan@wit.ie

Pictures

Pictures

• Profile controller can be equipped with two new actions:

• upload a picture:

• send picture to databased for the current user

• ‘get’ a picture:

• read back a picture from the database for some given id

• In both cases, the picture will be associated with the ‘id’ of the user

• In a Play model - a picture is represented by a ‘Blob’ class

• BLOB = Binary Large Object

3

Four Steps:	

1: Equip User Model with a Blob

2: Provide ‘Upload Picture’ route + action in HomeProfile

3: Provide ‘Get Picture’ route + action in HomeProfile

4: Invoke ‘Get Picture’ action in views/HomeProfile

5: Invoke ‘Upload Picture’ action in views/HomeProfile

6: Invoke ‘Get Picture’ action in views/UserProfile

4

1: Equip User Model with a Blob

• The Blob will be the
field that holds the
picture in the
database

5

public class User extends Model
{
 public String firstName;
 public String lastName;
 public String email;
 public String password;
 public String statusMessage;
 public Blob profilePicture;

 // as before...
}

2: Provide ‘Upload Picture’ route + Action in HomeProfile

• Must provide ID of user + the image data.

• Locate the user in the database

• Insert the picture

• Save the changes

6

 public static void uploadPicture(Long id, Blob picture)
 {
 User user = User.findById(id);
 user.profilePicture = picture;
 user.save();
 index();
 }

POST /profile/uploadpicture/{id} Profile.uploadPicture

3: Provide ‘getPicture’ route + action in HomeProfile

• Look up the user in the database

• Read the picture from the correct field

• If there is actually a picture there

• render the image to the view as binary data

7

 public static void getPicture(Long id)
 {
 User user = User.findById(id);
 Blob picture = user.profilePicture;
 if (picture.exists())
 {
 response.setContentTypeIfNotSet(picture.type());
 renderBinary(picture.get());
 }
 }

GET /profile/getpicture/{id} Profile.getPicture

4: Invoke ‘Get Picture’ action in views/Profile

8

 public static void getPicture(Long id)
 {
 User user = User.findById(id);
 Blob picture = user.profilePicture;
 if (picture.exists())
 {
 response.setContentTypeIfNotSet(picture.type());
 renderBinary(picture.get());
 }
 }

 <h3>Profile Image</h3>

5: Invoke ‘Upload Picture’ action in views/HomeProfile

• Input type is ‘file’ - which will trigger browse of local file system and enable
selection of any image file on disk

9

 public static void uploadPicture(Long id, Blob picture)
 {
 User user = User.findById(id);
 user.profilePicture = picture;
 user.save();
 index();
 }

 <form action="/profile/uploadpicture/${user.id}" method="post" enctype="multipart/form-data">
 <input type="file" name="picture" />
 <input type="submit" name="submit" value="upload" />
 </form>

6: Invoke ‘Get Picture’ action in views/PublicProfile

10

THE END

11

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

